Department of Animal Nutrition and Management **Swedish University of Agricultural Sciences** Rolf Spörndly rolf.sporndly@slu.se www.slu.se/huv Rainer Nylund rainer.Nylund@slu.se www.slu.se/huv Poster 2.23 # Mantel film on round bales Net replacement film in round bale ensiling of ley crop ## CONCLUSION Replacing net with film resulted in better shaped bales, better seal integrity, higher CO₂ and less mould. But reducing the number of stretch film to 4 layers is not recommended. #### **BACKGROUND** - Netting shape the bale but does not contribute to seal integrity - Net and stretch film has to be removed and stored separately for recycling - Mantel film could possibly reduce the number of stretch film layers needed ### **HYPOTHESIS** Mantel film will improve seal integrity and anaerobiosis of bales and ameliorate the silage quality. #### MATERIALS & METHOD 36 bales made by McHale Fusion 3 Plus - Net or Mantel film (17µm, 1390mm, 3 layers) - 4, 6, 8 layers of stretch film (25µm, 750mm) - Grass-Clover ley, 45 % DM - 6 replicates per treatment equally distributed among 6 blocks at the field #### **RESULTS** Mantelfilm bales gave: - Better seal integrity - Higher CO₂ content - Slimmer bales - Less mould - Lower NH₃-N More layers gave: - Better seal integrity - Higher CO₂ content - Thicker bales - Less mould - More WSC | | Comparing Mantelfilm vs Net | | Comparing number of stretch film layers | | | Mantel x layer interaction | |------------------------------------|-----------------------------|-------------------|---|--------------------|-------------------|----------------------------| | | Mantelfilm | Net | 4 layers | 6 layers | 8 layers | | | Volume, m ³ | 1.67 ^a | 1.71 ^b | 1.69 | 1.69 | 1.68 | n.s. | | Perimeter, m | 4.21 ^a | 4.28 ^b | 4.22 ^a | 4.24 ^{ab} | 4.28 ^b | n.s. | | Density, kg DM
m ⁻³ | 172.7 | 167.6 | 170 | 170 | 171 | n.s. | | DM loss, % | 0.90 | 0.90 | 0.96 | 0.95 | 0.80 | n.s. | | CO ₂ , % | 63.7 ^a | 57.2 ^b | 54.0 ^a | 61.3 ^b | 66.1 ^b | p<0.05 | | Seal integrity, s | 938 ^a | 533 ^b | 165 ^a | 879 ^b | 1162 ^b | p<0.05 | | Yeast, cm ² | 0.00 | 0.06 | 0.09 | 0.00 | 0.00 | n.s. | | Mould, cm ² | 0.03 ^a | 0.78 ^b | 1.17 ^a | 0.06 ^b | 0.00 ^b | p<0.05 | | рН | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | p<0.05 | | WSC, g kg DM ⁻¹ | 7.2 | 6.4 | 6.0 ^a | 6.9 ^{ab} | 7.5 ^b | p<0.05 | | Ammonia-N, % of total | 4.5 ^a | 5.1 ^b | 5.1 | 4.6 | 4.7 | n.s. | | Lactic acid, g kg DM ⁻¹ | 1.4 | 1.5 | 1.6 | 1.3 | 1.4 | p<0.05 | | Acetic acid, g kg DM ⁻¹ | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | p<0.05 | | Ethanol, g kg
DM ⁻¹ | 1.5 | 1.6 | 1.8 ^a | 1.6 ^b | 1.3 ^c | n.s. | (Different superscripts in rows indicate significant diff at p<0.05)